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Abstract
We consider a deterministic realization of Parrondo games, and use periodic
orbit theory to analyse their asymptotic behaviour.

PACS number: 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Directed transport has received remarkable attention for a number of years now, since it
has been recognized as a crucial issue in a number of physical and biological contexts (see
the review [1] and references therein). A striking phenomenon in this context is ratchets
behaviour, where currents may flow in a counter intuitive direction. Parrondo games (see
[2] and references therein) offer a remarkable and simple illustration of these subtle transport
properties: a random combination of two losing games may result in a winning strategy. In
this paper, we present a deterministic analogue of Parrondo games, in the form of a (piecewise
linear), periodic map on the real line, and study transport properties by means of periodic
orbit expansions [3]: in this simple setting they allow us to perform analytic evaluations of the
relevant quantities, while providing a highly effective perturbative technique to get accurate
estimates in more general cases (for instance by considering nonlinear mappings). The paper is
organized as follows: in section 2 we construct a deterministic realization of Parrondo games
in the form of a one-dimensional mapping on the real line, in section 3 we briefly review
how to study transport properties of deterministic systems by periodic orbits expansions, in
section 4 we apply such a theory to Parrondo mappings and discuss some features of our find-
ings, and in section 5 we give our conclusions, and possible future developments of the present
work.
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2. One-dimensional Parrondo mappings

Let us briefly recall the simplest implementation of Parrondo games: we start from two
simple games A and B: A is a simple-coin tossing game with winning probability p and
losing probability (1 − p): each time the game is played the player toss the coin: if he/she
wins then the capital (an integer value, which we denote by X) is increased by one unit,
otherwise it is decreased by the same amount. Game B is a little bit more complicated,
as it requires two ‘coins’, selected upon inspection of the present value of the capital: if
X = 0mod M winning/losing probability is p1/1 − p1, while in the opposite case (X �= 0mod M)

the winning/losing probability is p2/1 − p2: where M is a fixed integer. Now suppose that
at any integer time step n (starting from zero) a game is played: X(n) which represents the
instantaneous value of the capital. It turns out that fine tuning of the parameters leads to a
paradoxical behaviour: namely take M = 3, p = 1/2−ε, p1 = 1/10−ε, p2 = 3/4−ε, for a
sufficiently small value of ε: both games are in this case slightly unfair: if the player keeps on
playing A or B the capital will drop down linearly, while playing A or B in random order (for
instance with probability 1/2) results in a winning strategy, where on the average the capital
increases linearly with time! The paradox can be explained by a Markov chain analysis [4].

We now map the problem to a dynamical setting: that is we want to introduce a map
FP on the real line such that X(n + 1) = FP (X(n)), where ‘transition probabilities’ are a
reflection of the game rules: each realization of the game will correspond to a choice of the
initial condition x0 for its deterministic version Fp. Let us start from game A: the dynamical
realization is easily accomplished once we define FP on the unit interval as follows:

FPA(x) =
{ 1

p
x + 1 x ∈ [0, p)

1
1−p

x − 1
1−p

x ∈ [p, 1)
(1)

and then extend (1) on the real line by translation symmetry

FPA(x + n) = FP (x) + n n ∈ Z (2)

(see figure 1). The left branches of the map correspond to a winning event (capital is increased
by one unit, strictly speaking capital corresponds to the integer part of the dynamical variable
here) while right branches account for losing events. In the theory we will employ later on
together with the map on the real line we also need to consider a corresponding torus map
F̂ P (ϑ) on the circle, that is simply defined as (see figure 2)

F̂ PA(ϑ) = FP (ϑ)mod 1. (3)

The construction of a dynamical mapping corresponding to successive playing at B game
is slightly more complicated, as the natural unit is not a single cell, but a group of three cells,
due to the mod 3 condition: once we take it into account we may define in this case

FPB(x) =




1
p1

x + 1 x ∈ [0, p1)

1
1−p1

x − 1
1−p1

x ∈ [p1, 1)

1
p2

x − 1
p2

+ 2 x ∈ [1, 1 + p2)

1
1−p2

x − 2
1−p2

+ 1 x ∈ [1 + p2, 2)

1
p2

x − 2
p2

+ 3 x ∈ [2, 2 + p2)

1
1−p2

x − 3
1−p2

+ 2 x ∈ [2 + p2, 3).

(4)
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Figure 1. The map corresponding to game A.

1

0 p 1

Figure 2. The torus map corresponding to game A.

Figures 3 and 4 show the corresponding map on the real line and on the (mod 3 torus),
respectively. Now we are interested in a random combination of the two games: we call γ the
probability that at each step game A is played ((1−γ ) will correspondingly be the probability
of playing game B): though a treatment involving composition of the individual games’
transfer operators is possible [5], the simplest way of constructing the relevant dynamical map
is to consider combined rates of winning and losing, and then designing the corresponding
map. We define

q1 = γp + (1 − γ )p1 (5)

and

q2 = γp + (1 − γ )p2. (6)

These are the rates of winning if the capital is/is not equal to zero (mod 3): the corresponding
dynamical map is then very similar to (4) and precisely
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Figure 3. The map corresponding to game B with p1 = 1/10 − ε, p2 = 3/4 − ε and ε = 0.005.
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Figure 4. The torus map corresponding to game B with p1 = 1/10 − ε, p2 = 3/4 − ε and
ε = 0.005.
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Figure 5. The torus map corresponding to the random composition of games A and B with
γ = 1/2.

FPA�B(x) =




1
q1

x + 1 x ∈ [0, q1)

1
1−q1

x − 1
1−q1

x ∈ [q1, 1)

1
q2

x − 1
q2

+ 2 x ∈ [1, 1 + q2)

1
1−q2

x − 2
1−q2

+ 1 x ∈ [1 + q2, 2)

1
q2

x − 2
q2

+ 3 x ∈ [2, 2 + q2)

1
1−q2

x − 3
1−q2

+ 2 x ∈ [2 + q2, 3).

(7)

The (torus) map is shown in figure 5: the labels η ∈ {1, 2, 3, 4, 5, 6} indicated on top of the
figure are symbols defining a partition of the unit interval according to the support of the
different branches of the map (cf (7)). It is important to remark that in each subinterval η both
the slope of the map and the capital gain ση are constant: in particular σ1 = σ3 = σ5 = +1
(winning intervals) and σ2 = σ4 = σ6 = −1 (losing intervals). The slopes (which account for
orbit instability) of the different branches are

�3 = �5 = q−1
2 �4 = �6 = (1 − q2)

−1 �1 = q−1
1 �2 = (1 − q1)

−1. (8)

The asymptotic properties of the combined game in this dynamical context correspond to
transport features: we are particularly interested in evaluating the net-directed velocity v

�1(n) = 〈Xn − X0〉0 = v · n (9)

and the diffusion coefficient D

�2(n) = 〈(Xn − X0)
2〉0 − v2n2 = 2D · n, (10)

where 〈· · ·〉0 denotes an average over a set of initial conditions (for instance uniform distribution
on the cell at the origin).
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3. Periodic orbit theory

A suitable technique to compute exponents like v and D is via cycle expansions [3, 6]: it
automatically encompasses universality features, being invariant under topological conjugacies
and, while allowing us to get analytic results in the present context, it may be applied—as
a genuine perturbative scheme—to possible generalizations (for instance, if we consider
maps where piecewise linearity is lost). Such a technique has been applied to other systems
exhibiting chaotic transport [7], and also generalized to yield anomalous moments’ exponents
when intermittency appears [8]. We very briefly recall how v and D are computed: a
pedagogical introduction is contained in [9]. The asymptotic behaviour of moments is
determined through the generating function

Gn(β) = 〈eβ(Xn−X0)〉 (11)

as

〈(Xn − X0)
q〉 =

(
∂q

∂βq
Gn(β)

)∣∣∣∣
β=0

. (12)

In this way one has to characterize the asymptotic behaviour of the generating function: as in
statistical mechanics of lattice systems a (generalized) transfer operator Lβ may be introduced,
such that

Gn(β) =
∫

dx
[
Ln

βρin
]
(x), (13)

where ρin is the density of initial conditions: thus the leading eigenvalue λ(β) of the transfer
operator dominates the asymptotic behaviour of the generating function

Gn(β) ∼ λ(β)n, (14)

while the expression for the transfer operator is as follows:

[Lβφ](x) =
∫

dy eβ(FP(y)−y)δ(FP(y) − x)φ(y). (15)

A convenient way to compute the leading eigenvalue of Lβ is provided by the dynamical zeta
function [3, 6] which is expressed as an infinite product over prime periodic orbits of the torus
map F̂ :

ζ−1
(0)β(z) =

∏
{p}

(
1 − znp eβσp

|�p|
)

. (16)

Each orbit carries a weight determined by prime period np, instability �p =∏np−1
i=0 F̂ ′

P

(
F̂ i

P (xp)
)

and the capital gain σp, that is the integer factor that gives the capital
variation per cycle once the orbit is unfolded on the real line: if the orbit has symbol sequence
ε1, . . . εnp

according to the partition defined earlier, then

σp =
np∑

k=1

σεk
. (17)

The way dynamical zeta functions enter the game is that their smallest zero coincides with
the inverse of the leading eigenvalue of the transfer operator [3]: though this might look as
a cumbersome way to attack the problem of averages computations, it turns out that if the
symbolic dynamics of the system is under control (as in the present example, as we will show
later) dynamical zeta functions may provide exact results (as in the Parrondo case), or, in
more general examples, they yield a scheme to compute averages in a rapidly converging
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perturbative scheme [6, 3]. We call z(β) the smallest zero of the dynamical zeta function: by
expanding (11, 14) around β = 0, we get

〈eβ(Xn−X0)〉 ∼
〈
1 + β(Xn − X0) +

β2

2
(Xn − X0)

2 + · · ·
〉

�

λ(β)n ∼ 1 + βnλ′(0) +
β2

2
[n(n − 1)λ′(0)2 + nλ′′(0)] + · · · .

(18)

where we have taken into account that λ(0) = z(0)−1 = 1, as the generalized transfer
operator for β = 0 coincides with the Perron–Frobenius operator whose leading eigenvalue
(corresponding to the invariant measure) is λ = 1. This easily yields v and D in terms of zeta
functions [7] (note that all cases dealt with in former papers, however, consider systems where
symmetry yields v = 0)

v = d〈Xn − X0〉
dn

= λ′(0) = −
(

−∂βζ−1
(0)β

∂zζ
−1
(0)β

)∣∣∣∣∣
β=0,z=1

. (19)

For the diffusion constant, we get

D = 1
2 (λ′′(0) − λ′(0)2), (20)

where the first derivative is given by (19), while

λ′′(0) = 2

(
−∂βζ−1

(0)β

∂zζ
−1
(0)β

)2
∣∣∣∣∣∣
z=1β=0

+

((
∂zζ

−1
(0)β

)2
∂ββζ−1

(0)β +
(
∂βζ−1

(0)β

)2
∂zzζ

−1
(0)β − 2∂βζ−1

(0)β∂zζ
−1
(0)β∂zβζ−1

(0)β(
∂zζ

−1
(0)β

)3

)∣∣∣∣∣
z=1β=0

. (21)

4. Parrondo transport from zeta functions

In order to use formulae like (19, 21) for the deterministic version of Parrondo games, we have
to provide an expression for the zeta function. This is done once we set up the symbolic rules
for dynamics: by considering the torus map F̂ PA�B (see figure 5), the only allowed symbolic
transitions are the following:

. . . 13 . . . . . . 14 . . . . . . 25 . . . . . . 26 . . .

. . . 35 . . . . . . 36 . . . . . . 41 . . . . . . 42 . . .

. . . 51 . . . . . . 52 . . . . . . 63 . . . . . . 64 . . .

(22)

thus admissible symbolic sequences are generated by the Markov graph of figure 6. As the
weights we attach to cycles depend only on how many times different symbols appear in the
cycle code, our problem is essentially topological and the zeta function is a polynomial, which
we can easily write once we have the full list of non-intersecting loops of the Markov graph
of figure 6. These are

14 25 36 135 264 1364 1425 2635 135 264 136 425 142 635. (23)

Then [10, 11]

ζ−1
(0)β =

f∑
k=0

∑
π

(−1)ktp1 · · · tpk
, (24)
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Figure 6. The Markov graph generating symbol sequences for the map F̂ PA�B .

where all possible combinations π of non-intersecting loops p1 · · · pk are considered, f is the
maximum number of non-intersecting loops that we may put on the graph and

tp = znp eβσp

�p

. (25)

Once we take into account cancellations (for instance the cycle 142 635 is completely shadowed
by the product of 14 and 2635 cycles), the generalized zeta function is written as

ζ−1
(0)β(z) = 1 − z2

(
eβσ14

�14
+

eβσ25

�25
+

eβσ36

�36

)
− z3

(
eβσ135

�135
+

eβσ264

�264

)
= 1 − z2 (q1(1 − q2) + q2(1 − q1) + q2(1 − q2)) +

− z3
(
e3βq1q

2
2 + e−3β(1 − q1)(1 − q2)

2
)
, (26)

where we have taken into account how instabilities (8) are expressed in terms of transition
probabilities (5, 6) and used the capital gains σ14 = σ25 = σ36 = 0, σ135 = 3 and σ264 = −3.
Now we take the original Parrondo values

p = 1
2 − ε p1 = 1

10 − ε p2 = 3
4 − ε (27)

and take γ = 1/2: once we insert (26) into (19), we may verify Parrondo paradox, namely
how unfair games (for small positive ε) lead to capital gain: see figure 7, and in the same way
we may look at the behaviour of the diffusion coefficient (see figure 8). In the same fashion
we may check how transport exponents depend on the parameter γ once the bias ε is fixed
(see the current behaviour in figure 9).

It turns out that by using the explicit form of the zeta function, we can actually derive
analytical expressions for such quantities: for instance, the current v as a function of ε for
γ = 1/2 reads (in agreement with [4])

v1/2(ε) = 6(3 − 229ε + 16ε2 − 320ε3)

709 − 32ε + 960ε2
, (28)

or, expressed as a first-order expansion in ε,

v1/2(ε) = 18

709
− 973 590

502 681
ε + O(ε)2 (29)

from which the small ε paradoxical behaviour is explicitly seen. More generally, we can
express the current v as a function of both ε and γ as

vγ (ε) = 6(−80ε3 + 8(1 − γ )ε2 − (11(2 − γ )γ + 49)ε + 2(1 − γ )(2 − γ )γ )

240ε2 − 16(1 − γ )ε + 11(2 − γ )γ + 169
. (30)
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0 0.005 0.01 0.015 0.02
ε

-0.02

-0.01

0

0.01

0.02

0.03

v

Figure 7. The current v as a function of ‘unfairness’ parameter ε for small positive ε (γ = 1/2).
Note the current inversion at ε ≈ 0.0131.

0 0.005 0.01 0.015 0.02
ε

0.4361

0.4362

0.4363

0.4364

0.4365

0.4366

0.4367

0.4368

D

Figure 8. The diffusion coefficient D as a function of ‘unfairness’ parameter ε (γ = 1/2).

Analytic expression may be obtained also for the diffusion constant D, for instance

D1/2(ε) = −(9(4ε(ε(64ε(ε(64ε(5ε(320ε(15ε − 2) + 9243) − 4487) + 1458 885) + 69 761)

− 6333 811) + 1191 650) − 34 590 345))/(2(32ε(30ε − 1) + 709)3). (31)

Generalizing to M > 3, the same qualitative behaviour would be obtained, after adjusting
the probability values. Differently, for M = 2, the paradox is not possible: the randomized
game maintains the same nature (loosing, fair or winning) as the native ones. The zeta function
in this case is

ζ−1
(0)β(z) = 1 − z2 (q1(1 − q2) + q2(1 − q1)) − z2(e2βq1q2 + e−2β(1 − q1)(1 − q2)), (32)

which leads to the following equation for the current v:

v(q1, q2) = q1 + q2 − 1

2
. (33)
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0 0.2 0.4 0.6 0.8 1
γ

-0.03

-0.02

-0.01

0

0.01

0.02

v

Figure 9. The current v as a function of γ for ε = 0 (full line), ε = 0.005 (dashed line) and
ε = 0.01 (dotted line). Maxima are attained at γ = 0.414 588, γ = 0.408 161 and γ = 0.401 643,
respectively.

In order to have the paradox, the following inequalities need to be simultaneously satisfied:

p < 1
2 , p1 + p2 < 1, q1 + q2 > 1, (34)

which is impossible (the same result can be obtained via a Markov chains analysis).

5. Conclusions

We have constructed a one-dimensional mapping providing a deterministic version of Parrondo
games: once the symbolic dynamics is coded, periodic orbit theory offers a way to get analytic
estimates of all the relevant transport exponents. While in this paradigmatic example results
may be obtained via probabilistic techniques [4, 12] we remark two things: once the structure
of the relevant zeta function is explicitly derived, all statistical averages may be computed in
a similar way in the present framework: moreover, our work may be considered as a first step
towards the periodic orbit analysis of ‘nonlinear’ Parrondo games, where the map ceases to
be piecewise linear: in particular, we plan to investigate sticking effects in this context, by
considering intermittent Parrondo maps.
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